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Abstract. In a strong magnetic field (flux lattice constant much smaller than penetration 
depth), vibrations of the vortex lattice are found to decouple from those of the applied field. 
This suggests that three-dimensional effects (vortex bending) are much more important than 
in previous theories. A modified Lindemann criterion shows that the vanishing of critical 
currents in the high-T, superconductors can be well described by flux lattice melting, with 
numerical fits yielding estimates for HCz which agree with the most recent previous values. 
The Lindemann criterion is found to be insensitive to the effective-mass anisotropy of the 
material except at high fields. 

In analysing the dispersion relation for the combined field-vortex oscillations, Doppler- 
shifted cyclotron resonance of core electrons is found to provide a roton-like minimum. 

1. Introduction 

A key limitation to technological application of the new high-T, superconductors [ 11 has 
been the very low values of critical current j ,  found at temperatures significantly below 
the critical temperature T,. The problem is twofold: j ,  is low in polycrystalline samples 
because of weak links between grains, but the intragrain j c  is also strongly temperature 
and magnetic field dependent, and is small at high T. Recent evidence suggests that this 
latter problem is due to a ‘melting’ of the flux lattice in these materials which takes place 
at relatively low temperatures, particularly in the newer Bi and TI-based compounds in 
which the melting occurs near TM = 30-40 K [2,3]. 

At present, there is considerable debate as to whether these phenomena represent 
a true melting of the flux lattice, or whether they are better described in terms of flux 
creep [4,5]. In parallel with this, there are questions as to whether the melting is an 
intrinsic phenomenon, or whether it is extrinsic: severely modified by defects which pin 
vortices. In light of these severe complications, the goal of the present paper is relatively 
modest: to examine flux lattice melting in the intrinsic regime, where defects can largely 
be neglected. Even this goal has not been fully attained: a number of effects-in 
particular, anisotropy-have not been fully incorporated. Nevertheless, it is hoped that 
the present results will be of value in better understanding the role of melting in these 
materials. 

In this paper, it is shown that the theoretical elastic response of the flux lattice is 
drastically modified in a strong magnetic field, B. A new regime of flux lattice vibrations 
is found (0 2) when the lattice constant a is much smaller than the magnetic penetration 
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depth A,. Here a 2  = 2 q 0 / a B ,  q 0  = hc/2e is the flux quantum, A: = mc2/4nep,, and 
p, = n,e, with n, the density of condensed holes. In this regime, the fields of the vortices 
overlap strongly, so that the magnetic field is nearly uniform spatially, with only a weak 
modulation due to the vortices. Oscillations of the vortex lattice can decouple from those 
of the field. The usual elastic constants refer to combined oscillations of the field plus 
vortex array, and remain finite even for T > T,. New elastic constants are introduced, 
characteristic of pure flux lattice vibrations. These are considerably softer, and vanish 
at T,. 

The Lindemann melting criterion, rewritten in terms of the corrected elastic 
constants, is found to yield extremely low melting fields, and a stronger scaling of field 
with temperature than that predicted in activated flux creep theories [4,5]. 

In the earlier theories of the flux lattice elasticity, the tilt modulus c44 was found to 
be much larger than the shear modulus c66. which was the only elastic constant to vanish 
at Hc2.  Under these circumstances, the vortices are stiff rods parallel to the field, and a 
two-dimensional melting theory [6-81 could be attempted. In the present theory, all 
lattice constants vanish at Hc2, and, c44 = c66. Hence, the vortices are extremely flexible, 
and a three-dimensional melting theory appears necessary, perhaps like the vortex ring 
models of the superfluid transition in 4He. In light of this, it is interesting to note ( Q  3) 
that a weak roton-like minimum occurs in the upper tilting mode (field plus vortex) 
dispersion relation. 

2. Vortex array versus uniform field 

The flux lattice is often approximated by an elastic continuum with bulk modulus, cI1,  
shear modulus, c66, and, to account for three-dimensional effects, a tilt modulus, c44. In 
an anisotropic material-such as a high-T, superconductor with applied field H parallel 
to the conducting planes-extra elastic constants are needed, but the above three suffice 
for a high-T, material with H perpendicular to the layers. 

The field enters the superconductor only via the vortices, and when the vortices are 
well separated (a A,) the field and vortices must oscillate in unison. However, when 
a 4 A,, the field is nearly uniform, with the vortex lattice producing a weak periodic 
modulation of amplitude less than 2HC1 -=S H. For the high-Tc superconductors, 
A, = 3000 A, and a = A, at B = H,, ~ 2 6 0  G. Thus vortices are virtually always in the high 
field regime. With applied fields greater than 2 T ,  the flux lattice provides only a very 
weak modulation. In such a situation, the vortices should be able to decouple from the 
applied field and vibrate independently. Hence, arguments based on the average c l l ,  
c44 may be seriously misleading in describing flux lattice melting. 

Put another way, the elastic constants describe combinedvibrations of the flux lattice 
plus magnetic field. Vibrations with wave vector k parallel to H a r e  predominantly field 
vibrations, and merge continuously into ordinary helicon waves in the normal metal 
above T,. In contrast, transverse modes require an ordered lattice (resistance to shear), 
and hence vanish above H,, or if the lattice melts-similar to Tkachenko modes in 4He. 
There is a second, lower-frequency branch of the vibration spectrum with k / /  H ,  a form 
of ‘second sound’ in which the vortices and normal quasiparticles vibrate against one 
another, but the background field remains unexcited. This branch also vanishes at 
Hc2, and it is this low-frequency branch which is responsible for flux lattice melting. 
Recognition of this second branch resolves a discrepancy between Brandt’s expression 
[9] for c44 and earlier helicon wave calculations, as discussed in 8 4.3 below. 
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It has been suggested to the author that it is not possible to tilt or bend the vortices 
without similarly perturbing the field B ,  since 'the field is generated by the vortices'. 
This statement is demonstrably incorrect, since it would lead to the paradoxical result 
that the field B must then vanish for B > Hc2. Instead, the vortices are related to the 
modulation of the field, and hence to the magnetisation M, where, well above H,,, 
4nM G B in the high-temperature superconductors. By restricting the discussion to the 
regime a G A s ,  the magnetic field can be separated as B = H + 4nM where His equal to 
the applied field and M is the magnetisation of the vortex lattice. Thus [lo] 

BH 
c44 =- 

4n 

can be split up as 

If an excitation causes both the field and the vortices to oscillate, the response is governed 
by the full c44; if, on the other hand, only the vortices vibrate, then only ci4 is involved. 
This can be approximated [9] as 

where Po = 1.16, the Ginzburg-Landau parameter, K = 
materials, and 

2 100 for the high-T, 
is the superconducting coherence length. In comparison 

where b = B/HC2,  and equation (4) is valid if b < 0.25. Thus for H ,  G B G Hc2, c66/c44 g 

d 2~ = ~ K H c l / I n  K). Associated with the two tilt moduli there will be two oscillation 
frequencies (calculated as in reference [ 111) : 

H 2  4BH,, G 1, but ci4/c66 4//30 1 (recall that H ,  = %/4nAS6 = Hc2/ 

mc 1 + k2A: 

4nci4 e 
w v  = (B) - k2A:. 

mc 

For convenience these two branches are labelled as h(e1icon) mode and v(ortex) mode, 
respectively. A kinetic equation derivation of these results is given in Appendix 1, where 
it is shown that ci4 corresponds to a second sound vibration, akin to that found in 
superfluid 4He, and that wh (equation 5(a)) must be modified when normal quasiparticles 
are present. If B G Hc2, then wv/k2A: eHcl /me = wC1. Thus in the long-wavelength 
limit wV/wh H2//30BH,2 - H,, / B  < 1. These frequencies are so low that they can 
easily be thermally excited, leading to significant tilting [12] of the vortex lines, unless 
they are strongly pinned. Thus if H,, = 500 G ,  m = 2mo, wC1 = 0.03 K. While a vortex 
lattice may persist, it should not be thought of as being straight, but rather very rubbery. 
The very different dispersion of the two modes should be noted. The helicon mode 
saturates at w = w, when kil, > 1, since the field cannot respond at wavelengths of less 



1200 R S Markiewicz 

than A s ,  There is no such restriction for the vortex modes and the two branches actually 
cross at kAs = B/Hcl, or ka = 1. 

Introduction of the soft tilt modulus c& modifies the Lindemann melting criterion 
introduced by Nelson and Seung [13]. They showed that the root-mean-square fluc- 
tuations of the vortex line displacement could be written as 

where n = B/q,,. According to the Lindemann criterion, the lattice should melt when U 
is about 10% of the lattice constant a. Since the vortices contribute to two normal modes 
of the coupled system, ‘ordinary’ and ‘second’ sound, the root-mean-square fluctuation 
should be written as a weighted sum of contributions from both modes. However, since 
the vortex mode is considerably softer, only it will be considered in the present paper. 
Making the substitution c44 + c&, equation (6) can be written as 

Equation (7) has two interesting features. First, it predicts a very low value of the melting 
temperature. Thus, using values for the Bi compounds (K 2 T a t  77 K), U = 
0. l a  at B = 11 G-that is the lattice is essentially melted at HcI. Moreover, equation ( 7 )  
has an interesting scaling form: if i / a  has a constant value and b 4 1, then 

200, H ,  

B = H:2/T2 - (1 - T/TC) ‘ /T2 .  (8) 

Since flux creep theory predicts H - (1 - 7‘/Tc)3/2/T, this suggests that flux creep will 
dominate near T,, and flux lattice melting at lower T.  A comparison with experiment 
[3,14,15] will be presented in § 4. 

In an anisotropic superconductor, it should be noted that c& is itself highly aniso- 
tropic, viaHc2 and K, whereas c44 is nearly isotropic, being dominated by the field effects. 
Some care must be taken in generalising equation (7) to an anisotropic system. This is 
further discussed in § 4.4 and Appendix 2. 

3. Magnetorotons (?) 

At Hc2, the lower vibration mode coy vanishes. The upper mode should extrapolate to 
the normal-state helicon mode. Equation 5(a) does not, and it is instructive to trace the 
source of this error. A helicon wave in a normal metal can excite a Doppler-shifted 
cyclotron resonance [16]. The resonance condition U + kuF U, becomes approxi- 
mately 

kr, = 1 (9) 

where r, = u ~ / u ,  is the cyclotron radius, since U < U,. This produces a form of Landau 
damping (strictly, cyclotron damping) of the wave: an electron propagating parallel to 
B can ‘surf ride’ and resonantly absorb energy from the helicon wave. In Appendix 1.3, 
it is shown that similar phenomena occur in a superconductor, with excitation of the 
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Figure 1. Normalised dispersion relations o/o, plotted against kA for helicon waves in a 
superconductor, assuming E = 0 1 T, p,/p = 0 1 (broken curves), 0 4 (dotted curves), 1 0 
(full curves) 

‘normal’ electrons in the vortex cores. The resulting dispersion of the helicon wave is 
equivalent to equation 5(a), with a renormalised penetration depth: 

i12 + A ~ / [ I  + p n p - I ( r  - i)]. (10) 

Here pn is the normal electron (quasiparticle) charge density, p = ps + ,on, A2p = 
k i p ,  , and r is defined in Appendix 1. 

Numerical estimates of the dispersion curve parameters are hampered by lack of 
detailed knowledge of the hole band parameters. Assuming the carriers form a single 
band with only spin degeneracy, n = 3 X lo2’ cm-3 and m*/mo = 2 (= ratio of effective 
mass to free-electron mass), then hw,/k,  = 0.67 B,, where BT is the applied field in 
teslas, and uFlI = 2.7 X lo7 cm s-l is the in-plane Fermi velocity. The relevant cyclotron 
radius involves uF1, which is about 100 times smaller, so r, = U ~ ~ / O ,  310 A/&. The 
‘roton’ dip occurs when w, = w + kvFI, or, for B > 1 T,  at approximately o = o,, k = 
k, = l/(A:rc)ll3 = Bq3/1400A, or k,a = 1/(2.9Bq6). Using these parameters, figures 
1-3 plot the helicon dispersion curves for a variety of values of B and p, /p;  a change in 
curvature can still be seen for p, /p = 0.1. In all cases, the threshold of the Doppler- 
shifted cyclotron resonance is accompanied by the onset of Landau damping, so the 
helicon waves are poorly defined at larger K-values. It is expected that p, /p = B/Hc2,  
so that at low T this factor can be large for fields parallel to the c-axis. 

When w t  > 1, the surf-riding phenomenon can lead to the generation of solitons in 
a plasma [17]. A similar phenomenon should arise in a superconductor, creating a 
localised excitation along the vortex core which has the properties of an incipient vortex 
ring. However, it is not clear if this occurs in the high-T, superconductors. The normal 
state t-’ cc T. If this same power law continues to hold for T < T,, the scattering rate 
will be too large for the solitons to exist as well-defined modes, except at very low 
temperatures, Since the mechanism producing the linear-in- T scattering is not well 
understood, it remains possible that t will be cut off below some T < T,. 
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Figure 2. Helicon dispersion relation, as in figure 1, for B = 0.5 T. Note that two solutions 
appear over a limited range of kA for p,/p = 0.4. 
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Figure 3. Helicon dispersion relation, as in figure 1, for B = 2.0 T, with an additional curve 
p,/p = 0.3 (the chain curve). 
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The above discussion has dealt with the helicon branch of the dispersion relation, 
equation 5(a). Since the vortex waves, equation 5(b) ,  couple more strongly to normal 
quasiparticles, it might be thought that they would show a similar roton dip. However, 
it can be seen from the equations of Appendix 1 that the normal electron conductivity, 
oxy, does not contribute to this dispersion relation. It may be that a dip occurs near ka = 
1, where the two branches of the dispersion curve cross. 

- 0  

4. Discussion 

4.1. The Lindemann criterion 

In a weak-pinning superconductor (fewer pins than vortices), it is the vortex lattice's 
resistance to shearing which prevents unpinned vortices from moving in response to an 
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Figure 4. Vortex lattice melting phase diagram, determined by vanishing of j c  (full circles) 
or mechanicalmeasurements (triangles-from [2]). Fullcurvescorrespond to the Lindemann 
criterion, equation (7), ii+ 0.1 a,  with parameters listed in table 1; broken curve, flux creep 
theory. Part (a ) ,  T1Ba,Ca3Cu40,, data of [3]; ( b ) ,  YBa,Cu,O,-,, [14]; ( c ) ,  T1Ba2CaCu20,, 
~ 5 1 .  

applied current. Hence, when the flux lattice melts, the critical current j c  should fall to 
zero. While the vanishing of j c  would offer an extremely convenient measure of flux 
lattice melting, its interpretation can be ambiguous, and has also been interpreted in 
terms of the flux creep [4,5]. In attempting to assess the role of flux lattice melting, the 
present section compares the experimental observations with the pure melting theory 
predictions. If it is assumed that the field HM at which j c  vanishes corresponds to 
flux lattice melting, then the Lindemann criterion can be compared with experiment 
[3, 14,151. Now, j c  is found to scale with field in a manner similar to that found by Kramer 
[18] in conventional superconductors (Hettinger et a1 [14] have shown that a very 
similar scaling is found in flux creep theory). By using this scaling, values of HM can be 
extrapolated to fields considerably higher than can be measured directly. Figure 4 plots 
the resulting values of HM for three different superconductors, and compares them with 
the Lindemann criterion prediction, equation (7), with U = 0. la.  To minimise the 
number of parameters, K has been taken to be T-independent, while Hc2( T )  was assumed 
to have the same form as in reference [3], but scaled to Hc2(0). The fit parameters are 
listed in table 1, and compared with other measurements of Hc2, employing single crystals 
[19-221. Most of these measurements underestimate Hc2, since they have assumed that 
this is the field at which the resistance has fallen to half its normal state value. It is now 
recognised that the resistive transition is greatly broadened by ‘flux creep’, and that Hc2 
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Table 1. Estimates of Hc2(0) and K .  

Hc2(0) ( T )  K 

Material" I /  J- 1 1  I Method References 

Eu 123 390 34 400b 35' R50d ~ 9 1  
Y 123 510 118 390b 90' R50 P O I  
Y 123 1270 195 750b 115' R90 PI1 

Bi 2212 1550 31 2S00b 50' R 3 1221 
Bi2212 2640 44 3300b 55' R50 P O I  

Y 123 300 150 Fig. 4(b) [14] 

TI 1212 100 200 Fig. 4(c) [15] 
TI 1234 1900 700 Fig. 4(a) [3] 

* Materials are abbreviated as TI 1234 = TIBa2Ca3Cu40,, Y 123 = YBa,Cu,O,_,, etc. 

to YBa2Cu30,_,. 
Estimated as K = l / E c ,  with E ,  derived from H,, a n d l  assumed to be =1500 A ,  appropriate 

Assumes K ~ / K _  = Hc21/Hc2L.  
R X% means that Hc2 is estimated as the field at which the resistance drops to X% of its 

normal state value. 

probably lies closer to the field of 90% normal state resistance. As can be seen from the 
table, this field is considerably higher. 

Figure 4 shows that this simple melting theory provides a remarkably good descrip- 
tion of the vanishing ofj,. Moreover, the values of Hc2 and K (table 1) are quite close to 
the most recent estimates for these values. Nevertheless, the following points should be 
noted: 

(i) The theory seems to underestimate the melting field in the higher temperature 
regime. This is probably because flux creep becomes important near T,, as suggested in 
reference [3b]. The broken curve in figure 4(a) shows that the data follow the scaling 
relation expected from flux creep theory in the higher temperature regime. A clear 
crossover from flux creep to a melting regime occurs near 40 K. Gammel et a1 [2] by 
studying the coupling of the flux lattice to mechanical vibrations of the sample, have 
shown that even near zero field, the onset of melting in T1- and Bi-based high-T, 
superconductors occurs near 30-40 K (triangles in figure 4). This result does not follow 
from the simple Lindemann criterion, which always predicts melting at T, as B-, 0 
(although the presence of rotons might change this). The observed lowering of the zero- 
field melting temperature below T, could be due to pinning [3]. 

(ii) The theory provides a simple explanation for the striking difference between the 
T1- (and Si-) based compounds, which melt near 30-40 K, and Y B a 2 C ~ 3 0 7 - b ,  which 
only melts near T,. Indeed T1Ba2Ca3Cu40, and Y B a 2 C ~ 3 0 7 - b  have nearly the same 
value of H,  (1.9 and 1.4 T respectively), so the difference is due solely to the much larger 
Ginzburg-Landau parameter (K 700) of the former compound. However, before this 
conclusion can be firmly accepted, the effects of anisotropy on the Lindemann criterion 
should be fully worked out. In particular, it is very curious that experinxtally [ 2 , 3 ]  
there appears to be relatively little dependence of H ,  on the orientation of the field. 

4.2. Role ofpinning and flux creep 

The above calculations have entirely neglected the role of pinning (except to provide a 
finite j c ) .  It is known [23] that collective pinning effects introduce finite correlation 
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lengths both parallel and perpendicular to the applied field. These correlation lengths 
have been interpreted as the average spacing between dislocations in the vortex lattice 
[24]. Hence, the flux lattice melting must be modified near the melting transition, when 
the flux lattice correlation length becomes comparable with the dislocation spacing. 
However, if the pinning is weak, this dislocation spacing is large, and these finite-size 
corrections to melting theory can be treated perturbatively [3a]. Since the impurity 
correlation lengths scale to zero at Hc2, corrections to melting theory will always be 
important at sufficiently high fields, but still may be small in the T1 and Bi compounds, 
where HM < Hc2. 

Experimentally, it has proven difficult to assess the importance of pinning. The fact 
that the melting temperature is similar in both Bi- and T1-based superconductors, 
whether single crystal [2] or polycrystalline [3] suggests that pinning effects might be 
weak, and the melting an intrinsic effect. Pinning effects should probably be stronger in 
YBa2Cu307-6, where the twin boundaries act as pinning centres. However, the melting 
temperature is considerably higher in this material, the opposite of the effect expected 
from pinning. 

The flux creep mechanism requires a flux lattice with many dislocations in it-in 
the absence of dislocations, any collective motion of a vortex bundle would generate 
vacancies and interstitials in the flux lattice, and the high energy cost of these (involving 
lattice compression) is neglected in theoretical treatments of flux creep. Hence, in the 
weak pinning regime, flux creep can probably be neglected. 

Any intrinsic melting theory seems to predict that the melting temperature must 
extrapolate to T, as B-, 0, in disagreement with experiment. In reference [3a], it was 
shown that in a two-dimensional melting theory (large c ~ ~ ) ,  pinning acts to reduce TM 
below T,, but that very large levels of pinning are required to obtain agreement with 
experiment. In the present three-dimensional theory, the soft c44 greatly reduces TM at 
modest magnetic fields, and suggests that a relatively small pinning density could cause 
TM(H = 0) T,. Alternatively, the reduction of TMcould be due to the second (ordinary 
sound) branch of lattice vibrations, in particular the thermal excitation of magneto- 
rotons. 

4.3. Other calculations 

After this paper was submitted for publication, I became aware of several related 
calculations [25-271 using the Lindemann criterion to describe flux lattice melting. 
Moore’s [25] treatment is similar to the present one. He also finds two branches of the 
dispersion relation. His Lindemann criterion differs from the present result only in that 
he used an expression for c66 which is valid in the high-field ( b  > 0.4) limit. References 
[26-271 both use Brandt’s Ginzburg-Landau expression [9] c,,(k). The resulting Lin- 
demann melting criteria are virtually identical to equation (7), except for an overall 
multiplicative constant. In particular, the scaling relation, equation (8), is unchanged. 

It is important to clarify the relation between the Ginzburg-Landau expression [9] 
for ~ , ~ ( k )  and the present two-fluid calculation. Brandt calculated c 4 4 k )  by a ‘frozen 
phonon’ technique-fixing the vortex to have a particular k-value, then calculating 
the Ginzburg-Landau energy of that configuration. The resulting ~ ~ ~ ( k )  had a similar 
dispersion to that found early by de Gennes and Matricon [ll,  281, but differed sig- 
nificantly at high fields and temperatures. If it were used to calculate the helicon 
dispersion relation, it would result in an expression similar to equation 5 ( a ) ,  but with a 
modified A,, which diverges both at T, and at Hc2. This would result in a discontinuity in 
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the helicon dispersion relation at Ifc2,  which is not observed experimentally [29]. The 
present two-fluid calculation explains the reason for this disagreement. A pure vortex 
oscillation is actually a linear combination of several of the normal modes of oscillation 
of the combined quantum fluid. The resulting c44 is dominated by the helicon mode at 
low q and by the second sound mode at high q. The vortex displacement vector should 
be a weighted sum over the normal mode components, but is dominated by the lightest 
mode. The difference between the present equation (7) and the results of references 
[26,27] is presumably the weight factor of the second sound mode. However, the present 
calculation is considerably more amenable to incorporation of anisotropy effects, as 
shown in 9 4.4. 

A word of caution to experimentalists. The present calculation of the Lindemann 
criterion depends on energetics only, and is insensitive to dynamics. Thus the calculation 
holds even for the high-T, superconductors, where both the helicons and second sound 
modes are probably overdamped, due to the large normal state resistivity. The best 
chance of seeing these effects would be in a conventional superconductor, such as Nb, 
where helicon waves have already been observed [29]. 

4.4. Anisotropy 

Combining the work of Nelson and Seung [13] with the recent work of Kogan and 
Campbell [30] on c66 anisotropy, it is possible to calculate the way in which the strong 
effective-mass anisotropy modifies the Lindemann criterion, equation (7). Anisotropy 
has two effects: first, Hc2 must be replaced by its proper angular-dependent value; then 
the Ginzburg-Landau parameter must be replaced by an effective, angle-dependent 
value, Keff. Explicit calculations (Appendix 2) show qffl = ( K ~ K ~ I ) ' ~ ~ ,  while Keffl1 = K I ~ .  
Hence, the combination .iff /Iff2, occurring in equation (7), is the same for these two 
extreme cases, strongly suggesting that it is independent of angle. In other words, the 
Lindemann melting criterion is independent of field direction (except for the explicit 
factor, 1 - b). 

This calculation confirms a conjecture by Bishop [31], that the effect of a soft c44 for 
B perpendicular to the ( a ,  b )  plane exactly compensates the effect of an extremely small 
c66 along the easy axis (perpendicular to c )  when B lies in the ( a ,  6) plane. It further 
explains the experimental results that the melting field is almost independent of angle. 
To correct table 1 for anisotropy, the only change is that the measured Keff = 150 for 
Y B a 2 C ~ 3 0 7 - b  should be compared with ( K ~ K I ~ ) ~ / *  = 120 [19], 190 [20], or 290 [21]. 

4.5. Rotons 

The Lindemann criterion is not in itself a theory of melting. The low bending energy 
(9 2) shows that vortices are far from straight, suggesting that two-dimensional theories 
are unlikely to describe the transition correctly, and that flux entanglement effects [12] 
are important. Just as in 4He, thermally excited vortex rings may provide the key to the 
transition. Such rings could allow a reconnection of adjacent vortex lines, allowing the 
array to slip gradually by pinning centres. Whether the roton-like minimum discussed 
in 9 3 is relevant to this transition can only be determined by more detailedinvestigation, 
including a better understanding of the role of viscosity and dissipation. However, this 
roton may be important in other systems, and its relation to the roton mode in superfluid 
4He should be explored. 
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Appendix 1. Kinetic equations for a superconductor 

A1 . I .  Usual dispersion relations, local limit 

Neglecting pinning and dissipative terms, the linearised kinetic equations for a super- 
conductor can be written in the local limit as 

mdv,  U ,  X B  Ps - E + - V p  
e d t  C Pn 

m d v ,  E x B  
e 8, C 

- E - V p  

mav,  U ,  X B B d 2 &  
e at C c az 

- E  + - U  7- V p  

4n d j  
c2 at 

V X ( V X E ) = - - -  

(Al . l )  

(A1.2) 

(A1.3) 

(A1.4) 

j = Pnvn + ~ s v s  (A1.5) 

where u ~ ( ~ )  is the normal fluid (superfluid) velocity, pnls) the corresponding charge 
density, E the vortex array displacement vector, p is the chemical potential, and U = 
(ti/4m)ln K. Equation (A1.3) has been simplified by assuming that E is a function of z 
(the field direction) and t only. These equations are actually based on the equations for 
vortices in 4He [32] using the well-known correspondences between the two systems 
[33]. All vectors are assumed to have the form of plane waves polarised in the x-y 
plane, propagating along z ;  for example, E = Eoei(kZ-Wt), etc. From these equations, the 
helicon-like dispersion can be derived. For ordinary helicon waves Vp = 0. The resulting 
dispersion relation is complicated, but simplifies in some limiting cases: 

(i) forp,  = 0: 

k2A2 hk2 
1 + k2A2 4m w = w ,  + - In K. (A1.6) 

The first term on the right-hand side is the usual result due to interacting vortices, while 
the second term is the oscillation frequency of a single vortex. It may be rewritten in the 
suggestive form wClk2A: where 

wC1 = eH,,/mc (A1.7) 

and H,, is the lower critical field. Hence, the second term is negligible in the usual case 
B 9 H,,. 
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(ii) For the normal state, U,, E vanish, ps = 0, and 

k2A2 
1 + k2A2 

0 = w ,  (A1 .S) 

where now A* = mc2/4ne,on. 
oc, and v is neglected, the 

dispersionrelationisidentical to equation (A1.8), butwith A* = mc2/4nep, p = pn + ps. 
With this definition of A ,  and neglect of the u-term, equation (A1.8) holds in all three 
regimes (i)-(iii). For comparison with the second sound mode in Appendix 1.2, the 
solution of equations (Al.1)-(Al.5) in this case will now be discussed in more detail. 
Setting Vp = 0 and neglecting E in equation (A1.3), the dispersion is found from the 
simultaneous solution of equations (Al.4) and 

(iii) Finally, if both ps and p, are non-zero, but o 

mdj j x B  
e d t  c - PE (A1.9) 

which follows from (Al.1) and (A1.3). Assuming that bothjandEvary as f  i ijei(kZ-W') 
then yields equation (A1 .8) and the ratioj/E = ick2/4nw. As is usual for helicon waves, 
only one of the two modes R k ip is propagating, depending on the sign of the charge 
carriers. 

Appendix 1.2. Second sound 

Equations (Al .  l)-(A1.5) also have a second-sound solution. Recall that in superfluid 
helium second sound is a coupled vibration in which the normal and superfluid carriers 
vibrate out of phase with one another (as in an optical mode), but in such a way that the 
total density ps + pn is constant. Since there is therefore no long-range Coulomb forces, 
this mode goes to zero frequency at k = 0, as in a sound mode. The energy, however, is 
transported collectively, in a temperature oscillation. 

Similarly, in equations (Al .  l)-(Al.5), there is an independent propagating solution 
associated with a temperature wave Vp = SVT ( S  is the entropy), which is decoupled 
from low-frequency magnetic field vibrations (U, = 0). It can be understood as a coupled 
vibration of the vortices ( E )  and the normal fluid (U,), and vanishes as pn -+ 0. 

Explicitly, let Vp, U,, E and E vary as (f i ij)e'(kz-wr). Then the amplitudes are 
related by 

pnvn = -ik2c2E/4no (A1.lO) 

Bvk2 
I V p l - E = - -  E 

C 

while E satisfies the equation 

i x B  B d 2 &  -- - _  
c 

- 
C 

with the dispersion relation 
w = k vk2 

(again, only one mode is propagating). 

(A l .  11) 

(A1.12) 

(A1.13) 

(Al .  14) 
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This mode is essentially the same as equation (5b). Thus v = mclA:, and the disper- 
sion relations would be identical if 4nci4 /B = H C 1 .  Instead, from equation (3), 
4~cV4~/B = yHC1(1 - b ) ,  with y = l/Poln(K). These differences are superficial. The 
parameter y is of the order one, and is typical of differences between two-fluid and 
Ginzburg-Landau calculations. (Such theories often approximate H,, - H,/K, without 
the factor In K.) Finally, the factor 1 - b is absent because the kinetic equations do not 
treat the critical regime properly: ci4,  like c66, must vanish at Hc2 when the super- 
conducting phase is no longer present. Thus, I propose identifying the vortex oscillations 
(5b) with the second-sound mode herein derived, equation (Al.14). 

Appendix 1.3. Non-local corrections: Doppler-shifted cyclotron resonance 

Equation (Al . l )  must be modified in the normal state to account for non-local effects. 
In the low-frequency regime, (Al .  1) becomes 

where u J k )  + pne/mmc as k +  0. The dispersion of osy arises because of cyclotron 
resonance, which becomes Doppler shifted for a finite-wavelength disturbance, w, = 
o + kuF+ kuF,  where uF  is the Fermi velocity of normal electrons. The resulting 
conductivity is [ 16,341 

Pne oxy = - 
C 

= (U,  - cc))/kUF = (1 - W / W , ) / k Y c  

where 8 is a step function, 8(x) = l(0) if x > (<)O. 
This in turn modifies the dispersion relation (A1.8) to 

k2c2 
U=- 

4JcOSY 

(A1.16) 

(A1.19) 

which develops an imaginary part (cyclotron damping) for kr, > 1, with a kink in the 
real part. 

In the superconducting state, similar non-local effects should arise for the vortex 
cores, at least for propagation parallel to the vortex axis. Cyclotron-damping effects are 
unlikely to involve superfluid electrons, because of the gap in their excitation spectrum. 
Assuming only the normal electrons are affected, the dispersion relation in the super- 
conducting state becomes 

o c k 2 A 2  
1 + p n p - l ( T  - 1) + k2A2'  

o =  (A1.20) 

This form correctly interpolates between the normal state result, (Al.l9), and the pn + 
0 result. In the high-field, low-Tregime, p n / p  + B/HC2. 
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Appendix 2. The Lindemann criterion in an anisotropic superconductor 

Neglecting the small a-b plane mass anisotropy, the high- Tc superconductors can be 
represented as uniaxially anisotropic materials, m, = mb = ml,  m, = m3 with ml/  
m3 y4, in the notation of Kogan and Campbell [30]. The Lindemann criterion now 
depends on the angle @ between the B-field and the c-axis because c4 and c66 (in equation 
(6)) are angle dependent. There are two modifications to equation (7): first Hc2 should 
be replaced by Hc2($);  secondly K must be replaced by Ken(@). In this appendix, I 
demonstrate that K ~ ~ ~ / H : ~  has the same value in the two extreme cases, @ = 0, n/2. This 
strongly suggests that the Lindemann melting criterion is angle independent (except at 
very high fields, where the factor 1 - b becomes important). 

For @ = 0, c661 has the form of equation 4,  with the parameters Hc2 and K taking on 
their appropriate (I) values. For ~ i 4 1  , the expression, equation (3) with i values must 
be multiplied by y4, as in the Nelson-Seung conjecture [13] (although c:4 is independent 
of $-see reference [27]). This yields K:ff(0) = K ~ K ! ~  , since Kl/Kll = Hc2L/Hc211 = y 2 .  

The case where B is parallel to the a - b plane is considerably more complicated, 
since c44 and c66 both depend on the angle 8 between the c-axis and the component of 
flux-line motion perpendicular to B.  Following Nelson and Seung [13], 

c i 4 1  
c ; ~ ~ ~  (e) = ( y4 cos2 e + sin2 e)  

Y 
while, using the calculation of Kogan and Campbell [30] 

(A2.1) 

(A2.2) 

with r = (1 - y 4 ) 2  (in Kogan and Campbell’s notation, r = 2(&) + (2;) - 2C,, - 
2y/Cg)) equation (6) must then be replaced by its average over 0. When this is done 
(numerically), it is found that equation (7) holds with Keffl1 = K I I .  Thus for $ = n/2 

K:fqllHfZlI = Kij/H:2lI = + : / e 2 1  = K:ffl/&. 

Thus, as claimed, the only angular dependence in equation (7) comes from the explicit 
factor b. 
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